
1. – Deployment

1.1 – SparkView only
1.2 – SparkView with reverse proxy, load balancer or VPN

2. – Integration without programming

2.1 – Microsoft RD Web Access portal
2.2 – Active Directory and LDAP
2.3 – Radius
2.4 – OAuth2
2.5 – SAML
2.6 – Single Sign-On (SSO) with HTTP basic authentication

3. – Client side (browser) integration

3.1 – Use 8 lines of code to start a remote connection from a web page
3.2 – Using object or cookie for parameters
3.3 – Resource redirection and parameters
3.4 – Start a program on connection (as shell)
3.5 – Start RemoteApp
3.6 – Virtual Channel (VC) and Dynamic Virtual Channel extension
3.7 – Gateway channel
3.8 – Configuration file and others
3.8.1 – Start up a server or application automatically after login

4. – Server side integration

SparkView integration
guide

4.1 – HTTP API
4.2 – Plug-in
4.2.1 – Start gateway and the plug-in example project in Eclipse
4.2.2 – Handshake plug-in
4.2.3 – Deploy your plug-in
4.3 – Downloading files unprompted

Appendices

Appendix A – Integration with symlink use case
Appendix B – Integration with third party application or HTTP service
Appendix C – Integration with plugin use case
Appendix D – Chromium Embedded Framework (CEF), WebView and Electron
Appendix E – Integration with an external application

1. – Deployment

1. – Deployment

Pros:

Easy and fast, 15 minutes to installation of Java and SparkView
Use SparkView as a normal RDP client with white list and black list.
Integrate with Active Directory, LDAP, RADIUS, OAuth2, MS RD Web Feed easily.
No need for another web server.

Cons:

You can customize the static web page, but if you need a dynamic web page, you’ll need
to write a plug-in for SparkView

1.1 – SparkView only

https://docs.sparkview.info/uploads/images/gallery/2022-04/sparkview-deploy-sv-only.png

1. – Deployment

Pros:

High availability
No need to expose SparkView
Seamlessly integrate into current environment
Tested on Nginx, Apache; VPNs from F5, Fortinet, Sophos, Cisco, Juniper, Dell, Check Point
etc.
Programming on your existing portal with familiar technology, like JSP, ASP.NET, PHP etc.

1.2 – SparkView with reverse
proxy, load balancer or VPN

https://docs.sparkview.info/uploads/images/gallery/2022-04/sparkview-deploy-rp-vpn.png

2. – Integration without
programming

2. – Integration without programming

Assume your web portal address is: https://MyRDPortal/RdWeb. You need to set up the following
two entries in gateway.conf:

Checklist:

Verify the web feed URL with your browser. You’ll see a cookie or XML displayed.
Clean the browser cache if your gateway start page is not changed to login.html
Make sure NTLM authentication on IIE is enabled:
https://technet.microsoft.com/enus/library/cc754628(v=ws.10).aspx
Make sure RDWeb/Pages and RDWeb/Feed on IIS is using “Windows authentication”
authentication mode instead of “Forms Authentication”.

2.1 – Microsoft RD Web Access
portal

webfeed = https://MyRDPortal/RDWeb/feed/webfeed.aspx

directoryIndex = login.html

https://technet.microsoft.com/enus/library/cc754628(v=ws.10).aspx

2. – Integration without programming

If all your users are domain users, please create a plain text file (encoding: UTF-8 without Byte
Order Mark) with following context:

Save it as users.json or other name and specify the location of this file in gateway.conf:

You can configure servers used by all the users in servers.json and specify the location of
servers.json in gateway.conf:

If you are using a LDAP server, please change the type to “LDAP”. You can also configure AD/LDAP
users in users.json:

2.2 – Active Directory and LDAP

{

 "source":{

 "type": "AD",

 "properties": {

 "server": "ADServerAddress"

 }

 }

}

user = C:\\workspace\\data\\users.json

server = C:\\workspace\\data\\servers.json

{

"users": [

 {

 "name": "user1",

 "password": "user1",

 "servers": [

 "RdpServer1",

 "TEST",

 "Excel 2010"

],

 "isDomainUser": true,

 "transferCredential": true,

 domainServer: "serverAddr"

 }

}

2. – Integration without programming

Make sure the IP of Spark Gateway is listed as a client on RADIUS server.
Make sure the timeout is at least 60000 milliseconds if your RADIUS server is using multi
factor authentication, like Azure MFA.

2.3 – Radius
{

 "source": {

 "type": "RADIUS",

 "properties": {

 "server": "192.168.12.128",

 "port": "1812",

 "accountingPort": "1813",

 "sharedSecret": "test123"

 "timeout": "60000",

 "retryCount": "3"

 }

 }

}

2. – Integration without programming

First, save your OAuth2 provider configuration into a JSON file, for example:

Second, specify the position of this file in gateway.conf:

For more information, please check the source code of login.html.

2.4 – OAuth2

{

 "providers" : [{

 "name" : "Google",

 "client_id" : "650561938988-t2r66k1ms3hpoi3k1e2g7l2adlarau8s.apps.googleusercontent.com",

 "client_secret" : "-D-nhxWn2E97tZWWLg5IQ6Ak",

 "request_uri" : "https://accounts.google.com/o/oauth2/auth",

 "redirect_uri" : "http://localhost/oauth2callback",

 "access_token_uri": "https://oauth2.googleapis.com/token",

 "auth_uri": "/login_chrome.html",

 "scope": "openid email"

 },

 {

 "name" : "Live",

 "client_id" : "0000000040133A31",

 "client_secret" : "p9WwBr2Pyrq6mtaeZCwTSwqbIF39Br3Z",

 "request_uri" : "https://login.live.com/oauth20_authorize.srf",

 "redirect_uri" : "http://www.remotespark2.com/oauth2callback",

 "access_token_uri": "https://login.live.com/oauth20_token.srf",

 "scope": "wl.emails",

 "profile_uri": "https://apis.live.net/v5.0/me"

 }]

}

oauth2 = \\user\\local\bin\\SparkViewGateway\\oauth2.json

2. – Integration without programming

You can get the integration of SAML from this document.

2.5 – SAML

https://docs.sparkview.info/books/sparkview-saml-configuration/page/configure-saml-authentication-and-authorization-on-sparkview

2. – Integration without programming

You can enable HTTP Basic Authentication on SparkView by setting authorization=Basic in
gateway.conf, so all the RDP connections will use credentials from the HTTP Authorization header.

This can be used for VPN SSO integration etc

2.6 – Single Sign-On (SSO) with
HTTP basic authentication

3. – Client side (browser)
integration

3. – Client side (browser) integration

Save a JavaScript file as tutorial1.page.js with the following content:

Save a web page as tutorial1.html with the following content:

3.1 – Use 8 lines of code to start
a remote connection from a web
page

window.onload = function() {

 var gateway = '192.168.12.111', //change this to your Spark gateway address

 server = '192.168.12.117', //change this to your RDP server address

 url = 'ws://' + gateway + '/RDP?server=' + server + '&user=vmuser&pwd=password';

 var r = new svGlobal.Rdp(url);

 r.addSurface(new svGlobal.LocalInterface());

 r.run();

};

<!doctype html>

<html>

<head>

 <meta http-equiv="X-UA-Compatible" content="IE=edge">

 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

 <title>Spark View (RDP)</title>

 <meta name="viewport" content="width = device-width, initial-scale = 1.0, user-scalable =

yes, minimum-scale = 0.1, maximum-scale = 8" />

 <meta name="apple-mobile-web-app-capable" content="yes" />

 <link rel="stylesheet" href="../hi5.css" />

 <link rel="stylesheet" href="../rdp.css" />

 <script type="text/javascript" src="../appcfg.js"></script>

 <script type="text/javascript" src="../resource.js"></script>

 <script type="text/javascript" src="../hi5core_min.js"></script>

 <script type="text/javascript" src="../hi5_min.js"></script>

 <script type="text/javascript" src="../surface_min.js"></script>

 <script type="text/javascript" src="../rdpcore_min.js"></script>

Double click on the html file and open it in your browser. You don’t even need a HTTP server for
this demo.

Checklist:

to enable HTML5.
<meta http-equiv="X-UA-Compatible" content="IE=edge"> to suggest Internet Explorer
using the edge web engine.
Viewport meta tag for touch interface
“apple-mobile-web-app-capable” meta tag to allow users to create shortcut on home
screen (iOS).
SparkView JavaScript libraries for RDP connection: appcfg.js (configuration), resource.js
(language resource), hi5_min.js (common utilities), surface_min.js (UI), rdp_min.js (RDP
decoder). Don’t forget hi5.css and rdp.css style sheets.
A canvas element with id “remotectrl” to display the remote connection. If you are using a
different id, you need to specify it when creating the LocalInterface in your JavaScript
code:
new svGlobal.LocalInterface(‘MyCanvasId’)

Make sure the JavaScript library is loaded before you start a remote connection. A good
place is the window.onload event.
SparkView client will manage the width and height of canvas. Never try to set it up in your
code. Never set up the width and height with CSS.
Make sure you include hi5core_min.js and rdpcore_min.js since 5.0.
You can set userWorker: false in appcfg.js to disable Web Workers (JavaScript threads).

Troubleshooting:

Check the JavaScript console log from your browser (F12 or Developer Tools)
Check SparkView log (InstallDir/logs/)
Internet Explorer may still be in legacy mode.
You may need to configure hi5.libPath if you are using the JS library in your portal. For
example, you can configure this in appcfg.js:
hi5.appcfg = {…}; hi5.libPath = ‘pathRelatedToYourWebRoot’;

The web worker will load rdpworker_min.js, hi5core_min.js, rdpcore_min.js at runtime.
They are supposed to be in the same directory with your web page by default. If not, you

 <script type="text/javascript" src="../rdp_min.js"></script>

 <script type="text/javascript" src="tutorial1.page.js"></script>

</head>

<body>

 <div>

 <canvas id="remotectrl"></canvas>

 </div>

</body>

</html>

can configure hi5.libPath to resolve this issue, but if your gateway is behind VPN and
JavaScript rewriter is used by the VPN, this path can be rewritten with a wrong value (VPN
JS rewriter bug). In this case, you can leave hi5.libPath as blank and copy those 3 js files to
the web page directory as a workaround.

3. – Client side (browser) integration

You can also use objects or cookie for parameters:

Object parameters with Rdp2:

Cookie parameters with Rdp2:

You can only set cookies if the web page is from http server.

HTTP Header parameters:

Following parameters can also be transferred within HTTP Headers:

3.2 – Using object or cookie for
parameters

window.onload = function() {

 var parameters = {

 gateway: '192.168.12.111',

 server: '192.168.12.117',

 user: 'vmuser',

 pwd: 'password'

 };

 var r = new svGlobal.Rdp2(parameters);

 r.addSurface(new svGlobal.LocalInterface());

 r.run();

};

window.onload = function() {

 document.cookie = 'gateway=192.168.12.111';

 document.cookie = 'server=192.168.12.117';

 document.cookie = 'user=vmuser';

 document.cookie = 'pwd=password';

 var r = new svGlobal.Rdp2();

 r.addSurface(new svGlobal.LocalInterface());

 r.run();

};

Best practices:

Don’t mix your web page with JavaScript code. You should always put your JavaScript code into
external files because:

Content-Security-Policy HTTP header can block this kind of mixed content.
This is blocked by Chrome Web Store App.
You cannot “pretty print” your code in browser’s Developer Tool, which is helpful when
the JavaScript code is minified.
You cannot dynamically modify your code in the Developer Tool, which is really helpful on
debugging and verifying your fix.
It’s better to put the Canvas element in a DIV.
You can have multiple Canvas elements in one page (using iframe or DIV) for multiple
remote connections.

gw_server, gw_port, gw_symlink, gw_user, gw_pwd

3. – Client side (browser) integration

SparkView has resource redirection (clipboard, drive, audio redirection etc.) disabled by default for
safety reasons. You need to implicitly enable them by setting up extra parameters.

Resource redirection can be enabled on both, client side using the JavaScript library and server
side using the servers.json.

Resource redirection

Parameter

Clipboard mapClipboard=on

Drive mapDisk=on

Also need to configure tmpdir in gateway.conf

Printer mapPrinter=on
printer=Your Printer Name

You can also configure printerDriver and printer (name) in
gateway.conf

You also need to install a PostScript to PDF converter or
PCL to PDF converter (depends on your printer driver) on
the gateway computer (no need to install it on RDP server)
and configure the location and command arguments for
the converter in gateway.conf:

converter = D:\Programs\gs\gs9.16\bin\gswin32c.exe
arguments = -dBATCH -dNOPAUSE -dUseCIEColor -
dPDFSETTINGS=/printer -sDEVICE=pdfwrite -q -
sOutputFile=%1 %2

Audio Playback playAudio=0

soundPref=0: low audio quality, low bandwidth usage.
soundPref=1: high audio quality, high bandwidth usage.

Audio Input (Microphone) audioRecord=on

Time zone timezone= encodeURIComponent (‘(GMT-07:00) Mountain
Standard Time’)

Please check the Administrator’s Manual for all parameters you can use.

3.3 – Resource redirection and
parameters

Example of “enable clipboard redirection”:

Frequently used parameters:

Parameter

Value

port Integer, RDP listening port. Optional, default is 3389 for
RDP, 5900 for VNC, 22 for SSH, 23 for Telnet

user String, user name (Windows User).

pwd String, password for user name.

domain String, domain name.

keyboard Integer, keyboard layout, default is 0x409 (US)

width Integer, screen width of RDP session. Default is 800

height Integer, screen height of RDP session. Default is 600

vmid Hyper-V VM GUID, For example: B3D5444C-2611-405A-
9CA0-7AA8DA94DF0B, it’s for Hyper-V console connection.

minWidth Minimum width, some applications can only work on a
minimum resolution

minHeight Minimum height, some applications can only work on a
minimum resolution

Printer driver issue:

(Since version 5.7, Spark View can choose the best available driver automatically. It’s
not recommended to set up the printer driver unless you have special needs. The
followings is for reference only)

SparkView will use “MS Publisher Imagesetter” as the default printer driver, because all Windows
have this driver installed by default. We found some problems with this driver: It woks good if you
print only few pages, it’ll generate huge raw printing file (>1GB) if you are printing more than 50
pages. It’s better to change the printer driver in the gateway.conf:

You should make sure your RDP server has this printer driver installed. This is how to find a
PostScript printer driver:

var r = new svGlobal.Rdp('ws://gatewayAddr/RDP?server=192.168.12.117&mapClipboard=on');

printerDriver = HP Color LaserJet 8500 PS

https://docs.sparkview.info/uploads/images/gallery/2022-04/sv-printer-step-1.png

https://docs.sparkview.info/uploads/images/gallery/2022-04/sv-printer-step-2.png

https://docs.sparkview.info/uploads/images/gallery/2022-04/sv-printer-step-3.png

Copy the selected printer name then “Cancel”. You don’t need to actually install it, then you set up
this printer driver in gateway.conf.

Please make sure it’s a PostScript or PCL printer. You need to set up the PostScript to PDF
converter or PCL to PDF converter accordingly in gateway.conf.

1. Download and install your desired printer driver
2. Set up the printer driver name in gateway.conf:

printerDriver = HP Universal Printing PS

https://docs.sparkview.info/uploads/images/gallery/2022-04/sv-printer-step-4.png

3. – Client side (browser) integration

Set up the following parameters:

Checklist:

You many need to allow the RDP server to run any application if you are connecting to a
Windows server.

3.4 – Start a program on
connection (as shell)

startProgram=shell

command=encodeURIComponent(‘C:\\apps\\notepad.exe’)

directory= encodeURIComponent(‘C:\\apps\\’)

3. – Client side (browser) integration

Add the following parameters if you want to start the RemtoeApp in current browser window:

Start RemtoeApp in a new window:

3.5 – Start RemoteApp

startProgram=app

exe=||WINWORD

directory= encodeURIComponent(‘C:\\apps\\’)

function startRemoteApp(remoteApp, args, dir, url){

 var r = svManager.getInstance() || new svGlobal.Rdp(url); //reuse existing session if

available

 function onSurfaceReady(surface){

 r.addSurface(surface);

 if (r.running()){

 r.startApp(remoteApp, args, dir);

 }else{

 r.run();

 }

 };

 window.svOnSurfaceReady = onSurfaceReady;

 var rail = window.open('rail.html');

 rail.svOnSurfaceReady = onSurfaceReady;

}

window.onload = function() {

 var gateway = 'w-think', //change this to your SparkView address

 server = '192.168.12.132', //change this to your RDP server address

 user = 'vmuser',

 password = 'password',

 remoteApp = '||notepad',

 args = '',

 dir = '',

 url = 'ws://' + gateway + '/RDP?server=' + server + '&startProgram=app' + '&exe=' +

encodeURIComponent(remoteApp) + '&user=' + user + '&pwd=' + password;

Checklist:

Make sure you use the alias name of the RemoteApp and with “||’ before the name.
Make sure you publish the RemoteApp on your Windows first.

 startRemoteApp(remoteApp, args, dir, url);

};

3. – Client side (browser) integration

SparkView JavaScript client supports standard RDP virtual channel and dynamical virtual channel
extension. You can create multiple virtual channels and dynamic virtual channels on client side
using JavaScript (You can only create one VC before 4.0):

Virtual Channel is used to communicate with RDP host. You also need to write a plug-in for the RDP
host.

Please check the following for more information:
http://msdn.microsoft.com/en-us/library/aa383546(v=vs.85).aspx
http://www.codeproject.com/Articles/16374/How-to-Write-a-Terminal-Services-Add-in-in-Pure-C

3.6 – Virtual Channel (VC) and
Dynamic Virtual Channel
extension

var r = new svGlobal.Rdp(protocol + gw + "/RDP?"+ s, w, h, server_bpp);

var vc = new r.VirtualChannel(); //Use r.DynamicChannel to create a dynamic virtual channel

vc.name = "CUST";

vc.process = function(buffer){

 console.log(buffer.getByte());

 console.log(buffer.getLittleEndian16());

};

vc.onopen = function(){

 var data = new Array(7);

 var rb = new RdpBuffer(data, 0, 7);

 rb.setByte(1);

 rb.setLittleEndian16(345);

 rb.setLittleEndian32(567);

 rb.markEnd();

 vc.send(rb);

};

r.addChannel(vc);

http://msdn.microsoft.com/en-us/library/aa383546(v=vs.85).aspx
http://www.codeproject.com/Articles/16374/How-to-Write-a-Terminal-Services-Add-in-in-Pure-C

3. – Client side (browser) integration

You can create multiple gateway channels to create a communication layer between client browser
and the gateway:

On gateway side, your class must extend com.toremote.gateway.plugin.AbstractGatewayChannel
and register it with the same name using HandlerManager.registerChannel(). Please check the
plug-in example for more information.

3.7 – Gateway channel

var gvc = new r.GatewayChannel();

gvc.name = "gwc";

gvc.process = function(buffer){

 console.log(buffer.getByte());

 console.log(buffer.getLittleEndian16());

};

gvc.onopen = function(){

 var data = new Array(7);

 var rb = new RdpBuffer(data, 0, 7);

 rb.setByte(3);

 rb.setLittleEndian16(45);

 rb.setLittleEndian32(678);

 rb.markEnd();

 gvc.send(rb);

};

r.addGatewayChannel(gvc);

3. – Client side (browser) integration

You can use the appcfg.js file to configure some parameters for the client. For more information,
please check the source code of the file:
sparkview_root_directory/html/appcfg.js

3.8 – Configuration file and
others

3. – Client side (browser) integration

To start up a server or application automatically after login, you can set the following parameters in
the file html/appcfg.js . Please ensure, that your content is placed inside the hi5.appcfg = {}
brackets:

After editing, save the file and restart SparkView.

3.8.1 – Start up a server or
application automatically after
login

hi5.appcfg = {

	startup: {

		server: "", //If server is "" or not found, the first one will be opened instead.

		newWindow: false //Open in new window

	},

}

4. – Server side integration

4. – Server side integration

You can use HTTP request to create a server, symlink dynamically if you don't want to write a plug-
in for the gateway.

To use the HTTP server, you’ll need to configure a password in gateway.conf:

Then you can use MD5 hash of this password with the HTTP API.

http://gatewayAddress/SERVER?id=serverId&displayName=Name&server=hostName&gatewayPwd
=passwordInGateway.conf&...

gatewayPwd is hexadecimal MD5 hash of the password which is configured in gateway.conf.

To delete a server add "&action=delete" to the URL; to update a server, add "&action=update" to
the URL.

http://w-
think/SERVER?action=list&gatewayPwd=21232f297a57a5a743894a0e4a801fc3&id=ATPlus

It returns the asked server if id is specified:

It returns all servers if id is not specified:

4.1 – HTTP API

Password = yourPassword

Create servers on gateway:

List servers:

{"id":"ATPlus","displayName":"ATPlus","server":"cloud.thinrdp.net","shadowing":false,"protocol

s":"rdp","icon":"kbd.png","rdp":{"username":"demo","password":"demo"}}

{

 "display" : true,

 "type" : "NORMALLIST",

 "cols" : [

 {"name" : "id"},

 {"name" : "displayName"},

 {"name" : "server"},

http://gatewayAddress/SYMLINK?symlink=symlinkId&server=existingServerId&validTime=20m&gat
ewayPwd=passwordInGateway.conf&...

You can also use "validFrom", "validTo" parameters. Please check
http://www.remotespark.com/view/doc/com/toremote/gateway/connection/SymLink.html for more
information.

To delete a symlink, add "&action=delete" to the URL; to update a symlink, add "&action=update"
to the URL.

http://w-
think/SYMLINK?action=list&gatewayPwd=21232f297a57a5a743894a0e4a801fc3&symlink=212a15
5ee951-40db-95ea-177183174fa7

It returns the asked symlink if symlink is specified:

It returns all the symlinks if symlink is not specified:

 {"name" : "remoteProgram"},

 {"name" : "command"}

],

 "rows" : [

 ["ATPlus", "ATPlus", "192.168.12.117", "", ""],

 ["WordPad", "WordPad", "192.168.0.118", "", "wordpad.exe"]

]

}

Create symlink on gateway:

List symlinks:

{"id":"212a155e-e951-40db-95ea-177183174fa7","resourceId":"169.254.146.243","validFrom":"Aug

26, 2015 12:00:00 AM","parameters":""}

{

 "cols":[

 {"name":"id"},

 {"name":"resourceId"},

 {"name":"password"},

 {"name":"validFrom"},

 {"name":"validTime"},

 {"name":"validTo"},

 {"name":"parameters"},

http://www.remotespark.com/view/doc/com/toremote/gateway/connection/SymLink.html

http://w-
think/SESSION?action=list&gatewayPwd=21232f297a57a5a743894a0e4a801fc3&id=a29575a9-
08c2-4162-9bfb-4876820953db

It returns the single session information if session id is specified:

It returns all sessions if session id is not specified:

 {"name":"comment"}

],

 "rows":[

 ["212a155e-e951-40db-95ea-177183174fa7", "169.254.146.243", "", 1440568800000, "", 0, "",

""],

 ["c5c6bc9d-f8a7-42ca-af9c-bd28c86adab4", "169.254.146.243", "", 1452544860000, "", 0, "",

""]

]

}

List sessions:

{"id":"a29575a9-08c2-4162-

9bfb4876820953db","server":"192.168.12.118","clientIp":"169.254.84.132","clientAgent":"Mozilla

\/5.0 (Windows NT 10.0; WOW64) AppleWebKit\/537.36 (KHTML, like Gecko) Chrome\/47.0.2526.111

Safari\/537.36","thumbnail":"","startTime":"Tue Jan 26 15:38:55 MST

2016","numericId":621779525,"user":"","domain":"","rdpId":1,"startTime2":1453847935826}

{

 "cols":[

 {"name":"id"},

 {"name":"server"},

 {"name":"clientIp"},

 {"name":"clientAgent"},

 {"name":"startTime"},

 {"name":"numericId"},

 {"name":"user"},

 {"name":"domain"},

 {"name":"join"},

 {"name":"protocol"},

 {"name":"symlink"},

 {"name":"thumbnail"}

],

It returns multiple session information if ids parameter is used:

http://w-
think/SESSION?action=list&gatewayPwd=21232f297a57a5a743894a0e4a801fc3&id=a29575a9-
08c2-4162-9bfb-4876820953db&ids=sessinId1,sessionId2

http://wthink/CONTROL?licenseFile=base64encodedLicenseFile&gatewayPwd=21232f297a57a5a74
3894a0e4a801fc3

Please make sure you encode the value of licenseFile. For example:

The new license file information will be returned in JSON format if the license file was uploaded
successfully.

To query the current license file information, you can use:
http://w-think/CONTROL?licenseFile=.&gatewayPwd=21232f297a57a5a743894a0e4a801fc3

http://w-think/CONTROL?target=gateway

Password is not needed for this gateway information request.

http://w-
think/CONTROL?target=twofa&user=Username&gatewayPwd=21232f297a57a5a743894a0e4a801f
c3

 "size":1,

 "rows":[

 ["a29575a9-08c2-4162-9bfb-4876820953db","192.168.12.118","169.254.84.132","Mozilla\/5.0

(Windows NT 10.0; WOW64) AppleWebKit\/537.36 (KHTML, like Gecko) Chrome\/47.0.2526.111

Safari\/537.36","Tue Jan 26 15:38:55 MST 2016",621779525,"","","","RDP","",""]

]

}

[{session1}, {session2}]

Upload license file:

encodeURIComponent(base64encodedLicenseFile)

Get gateway information

{"version":"5.8.0","buildNumber":"941","buildTime":"2020_03_04_10","startTime":1583342850085}

Reset Two Factor Authentication

curl -k -G --data-urlencode "target=twofa" --data-urlencode "user=svtest\user1"
https://127.0.0.1/CONTROL

HTTP request will return HTTP Status code 500 and {"error:": "error information"} in JSON if there is
an error. For example, server or symlink with specified id was not found when you try to get a
server or symlink.

HTTP request will return status code 200 if operation succeeded.

Error handling:

4. – Server side integration

The gateway is a multi-thread application, so make sure your plug-in is:

Thread safe.
Spawn a thread if the operation takes more than 5 seconds, otherwise, it could cause a
network timeout exception and block the gateway.
Use Collections.synchronizedList(),Collections.synchronizedMap, ConcurrentHashMap etc.
Avoid anonymous class which could cause memory leak.
Make your plug-in stateless if possible.
Logging could be a bottle neck sometimes.

Please refer to the related links:

4.2.1 – Start gateway and the plug-in example project in Eclipse
4.2.2 – Handshake plug-in
4.2.3 – Deploy your plug-in

4.2 – Plug-in

https://docs.sparkview.info/books/sparkview-integration-guide/page/421-start-gateway-and-the-plug-in-example-project-in-eclipse
https://docs.sparkview.info/books/sparkview-integration-guide/page/422-handshake-plug-in
https://docs.sparkview.info/books/sparkview-integration-guide/page/423-deploy-your-plug-in

4. – Server side integration

Download the plug-in example:
http://remotespark.com/Plugin.zip

Extract the zip to your Eclipse workspace and run the follwing actions:

1. File -> Import
2. Click "Next"
3. "Browse" to your workspace directory
4. Select the Plugin project.
5. Click "Finish"
6. Right click on the Plugin project, "Run As" -> "Java Application"
7. Make sure "SparkGateway – com.toremote.gateway" is selected.
8. Click "OK"

Now the gateway with the plug-in is running in Eclipse. You can use the "Debug As" -> Java
Application to debug your plug-in code.

Checklist:

The SparkGateway.jar used by the plug-in project may be an old version
(Plugin\libs\SparkGateway.jar). Please replace it with the one from your
GatewayInstallDir\SparkGateway.jar, otherwise, some new APIs may not be available.

4.2.1 – Start gateway and the
plug-in example project in
Eclipse

http://remotespark.com/Plugin.zip

4. – Server side integration

Handshake plug-in is invoked before establishing a RDP connection. It’s a good place to verify,
modify or refuse the connection.

You can put any parameter you want when you create a connection on the client side. For
example, you can put user’s session id (session on your portal) into a RDP connection:

Then in the handshake plug-in, you can get the parameter and verify it through a web server on
your portal.

You can also encrypt the token from your portal (encrypted on server side), then decrypt it in the
plug-in:

4.2.2 – Handshake plug-in

var rdp = new svGlobal.Rdp(‘ws://myGateway/RDP?server=myServer&token=mySessionId&…’);

class SimpleHandshakePlugin implements HandshakeInterface{

@Override

public Map<String, String> onHandshake(Map<String, String> parameters) throws ClientException{

 String token = parameters.get("token");

 if (isInvalidSession(token)){

 throw new ClientException("Invalid sessioin");

 }

 return parameters;

}

public Map<String, String> onHandshake(Map<String, String> parameters) throws ClientException{

 String token = decryptToken(token);//throw ClientException if not valid

 Map<String, String> paramsFromToken = parseToken(token);

 parameters.put(RdpParameter.server, paramsFromToken.get("server"));

 parameters.put(RdpParameter.user, paramsFromToken.get("user"));

 parameters.put(RdpParameter.pwd, paramsFromToken.get("pwd"));

 String userIp = parameters.get(RdpParameter.ARG_CLIENT_IP);

 //enable recording

 parameters.put(RdpParameter.sessionRecord, "1"); //enable session recording

 //specify the recording file name (optional)

 parameters.put(RdpParameter.RECRODING_FILE_NAME, "myFileName");

 return parameters;

Best practices:

Make sure your plug-in code is thread-safe.
Make sure your code can be executed in 3-5 seconds, otherwise, please consider running
it in a thread.
You can also use the HTTP API instead if possible.
Please check the plug-in example on our web site for more details.

}

4. – Server side integration

Export the jar file:

1. Right click on the project, "Export", select "Runable JAR file" under Java.
2. Choose "SparkGateway - Plugin" in Launch configuration.
3. Choose export destination.
4. Click "Finish"

Make sure "Extract required libraries into generated JAR" selected in "Library handling"

It’s better to put your plug-in can be in a separated jar file. In this case, you should set up your
plug-in file path in gateway.conf:

Here is how to export the plug-in into a separated jar file (without the content of
SparkGateway.jar):

Make sure only the “src” directory selected
Click “Finish” and make sure you configure the pluginFile entry in gateway.conf

4.2.3 – Deploy your plug-in

pluginFile=theLocationOfYourPlugin.jar

4. – Server side integration

Users can download files through custom apps and programs. This can be archived by using the
clipboard redirection:

1. Make sure clipboard redirection is enabled, and copyFile=true in gateway.conf.
2. Set fileUnprompted=xlsx,xls (Excel files in this case, change to your related file types)
3. In the user's application, you need to provide a button or menu like "Download file", when

the user clicks this button, their application needs to copy the file to the clipboard (remote
computer's clipboard). Reference:
https://stackoverflow.com/questions/25708895/how-to-copy-files-by-win32-api-functions-
and-paste-by-ctrlv-in-my-desktop

4. The user will then see this message in the browser:

5. User clicks once again to download the file.

For this solution:

No need to install plugins or anything on the RDP server.
User needs two clicks to download the file. The browser can download the file directly
without the extra click, but that usually will be blocked by the browser (popup window
blocker).
The application can also copy multiple files to the clipboard, and gateway will download
them as a zip file (which includes all the files)
No need to enable drive redirection.

4.3 – Downloading files
unprompted

https://stackoverflow.com/questions/25708895/how-to-copy-files-by-win32-api-functions-and-paste-by-ctrlv-in-my-desktop
https://stackoverflow.com/questions/25708895/how-to-copy-files-by-win32-api-functions-and-paste-by-ctrlv-in-my-desktop
https://docs.sparkview.info/uploads/images/gallery/2022-04/unknown.png

Appendices

Appendices

Actors:

User, User Portal, Spark Gateway

Preconditions:

User Portal:

Have user credentials in plain text.

Spark Gateway:

Configure password in gateway.conf.
Allow IP addresses of User Portal to access the Spark Gateway API (Optional, Admin
Manual 3.25).
Create RDP servers with config.html or HTTP API (Integration Guide 4.1), and make it as a
white list.
Allow symlink access only by setting symlinkOnly = true in gateway.conf. Server id or
address will not be allowed to create a connection.
Disable VNC access by setting vnc = false in gateway.conf (SSH, Telnet are disabled by
default).

Basic flow:

1. User login to User Portal.
2. (optional) User Portal create a server on Spark Gateway with HTTP API if that server is not

created yet:
http://gatewayAddress/SERVER?id=serverId&displayName=Name&server=hostName&gat
ewayPwd=passwordInGateway.conf&...; Check if server exists:
http://wthink/SERVER?action=list&gatewayPwd=21232f297a57a5a743894a0e4a801fc3&i
d=serverId;
The gateway will return HTTP Status code 500 and {"error:": "not found"} in JSON format.

3. User Portal create a symlink on Spark Gateway with HTTP API:
'http://gatewayAddress/SYMLINK?symlink=symlinkId&server=existingServerId&validTime
=8h&gatewayPwd=passwordInGateway.conf¶meters=' +
encodeURIComponent('user=domainUser&pwd=domainPassword&domain=domain');

Appendix A – Integration with
symlink use case

https://docs.sparkview.info/books/sparkview-admin-manual/page/325-usb-redirection
https://docs.sparkview.info/books/sparkview-admin-manual/page/325-usb-redirection
https://docs.sparkview.info/books/sparkview-integration-guide/page/41-http-api

4. User portal construct a connection link and display it to user:
http://gateway/rdpdirect.html?symlink=symlinkId&displayName=nameOnBrowserTitle; or
use the Spark View JS library directly to create a connection:
var rdp = new svGlobal.Rdp(‘wss://gateway/RDP?symlink=symlinkId&..’, width, height,

color);

5. User click the link and connect.
6. User portal delete the symlink when user exist or close the browser:

http://gatewayAddress/SYMLINK?symlink=symlinkId&action=delete

Pros:

Easy and secure.
Symlink will be invalid or deleted and it cannot be reused by other.
No need to send the user credential to the browser side.

Cons:

User domain credentials need to be sent to the gateway in plain text.

Appendices

Actors:

User Portal, Spark Gateway, Third party application or HTTP server

Preconditions:

User Portal:

Prepare a token which can be used to verify user.

Spark Gateway:

Configure authToken.name, authToken.exec, authToken.sucessCode in gateway.conf.

Basic flow:

1. User Portal send the token to Spark Gateway along with other parameters.
2. Spark Gateway check if the token name is same as the value configured in

authToken.name. It’s same, then.
3. Spark Gateway execute the application or HTTP Request(GET) configured in

authToken.exec, if the return code or HTTP Status code is same as the
authToken.sucessCode, gateway will allow the connection, otherwise reject it.

Appendix B – Integration with
third party application or HTTP
service

Appendices

Actors:

User, User Portal, Spark Gateway

Preconditions:

User Portal:

Have user credentials in plain text.
Provide a service to verify the user (optional).

SparkView:

Write a simple plugin in java for Spark Gateway.
Disable VNC access by setting vnc = false in gateway.conf (SSH, Telnet are disabled by
default).

Basic flow:

1. User login to User Portal.
2. User Portal encrypt the user credential and other information like User Portal session id as

a token string, for example:
'user=domainUser&pwd=domainPassword&domain=domain&session=id’.

3. User Portal construct a connection link and display it to user:
http://gateway/rdpdirect.html?token=myEcryptedToken&displayName=nameOnBrowserTi
tle&otherParameters; or use the Spark View JS library directly to create a connection:
var rdp = new svGlobal.Rdp(‘wss://gateway/RDP?token=myEycryptedToken&..’, width, height,

color);

4. User click the link and connect.
5. SparkView plugin decrypt the token, verify the user session (optional) and put the

decrypted RDP parameters back (Please check the plugin example for details:
http://www.remotespark.com/Plugin.zip)

Pros:

User credentials are encrypted.
Encryption and decryption are done on server side which is pretty safe.

Appendix C – Integration with
plugin use case

http://www.remotespark.com/Plugin.zip

Plugin can also be used to verify if user is form a valid session, or extend the SparkView
functionality.

Cons:

Need to write some lines of Java code for Spark View gateway.
You may need to recompile the plugin when upgrading to a new version of Spark Gateway
(if the plugin interface changed).
Encrypted user credentials still need to be sent to the browser.

Both use cases are recommended. You can also consider to use them together (symlink with
plugin), so user credentials can be encrypted and don’t need to be sent to the client side.

If User Portal cannot have the user credentials in plain text, you can consider to create a temporary
windows user account for every user and remove this account later.

Appendices

You can use CEF or Electron to make a standalone client, so SparkView client can access local
resource directly (clipboard), and override some shortcuts keys reserved by the browser (Ctrl+T/W
etc).

1. Let Spark View know it can access the clipboard directly by setting directClipAccess: true
in appcfg.js.

2. For CEF, you need to enable cef_state_t javascript_access_clipboard.
3. For WebView, please check: https://stackoverflow.com/questions/4200259/tapping-

formfield-in-webview-does-not-show-soft-keyboard
4. For Electron, you can also use

mainWindow.webContents.executeJavaScript('hi5.appcfg.directClipAccess=true') to inject the
code.

Appendix D – Chromium
Embedded Framework (CEF),
WebView and Electron

https://stackoverflow.com/questions/4200259/tapping-formfield-in-webview-does-not-show-soft-keyboard
https://stackoverflow.com/questions/4200259/tapping-formfield-in-webview-does-not-show-soft-keyboard

Appendices

In addition to the known and internal verification options, an external application can also be used
for verification. This is usually easier than using your own plugin.
To do this, add the following lines to gateway.conf

SparkView will replace %1 with the value of the token in the WebSocket URL. The application can
then verify or decrypt this value. Additional parameters can also be written back to standard
output. These have the following format:

The output must start with __SG_ARGS=true\t , where the different arguments are then separated by
the tab character (\t). SparkView will then add these parameters back to the WebSocket URL.

Appendix E – Integration with an
external application

authToken.name = myToken

authToken.exec = C://MyApps//auth.exe %1

__SG_ARGS=true\tArg1=v1\tArg2=v2

