
Appendix A – Integration with symlink use case
Appendix B – Integration with third party application or HTTP service
Appendix C – Integration with plugin use case
Appendix D – Chromium Embedded Framework (CEF), WebView and Electron
Appendix E – Integration with an external application

Appendices

Actors:

User, User Portal, Spark Gateway

Preconditions:

User Portal:

Have user credentials in plain text.

Spark Gateway:

Configure password in gateway.conf.
Allow IP addresses of User Portal to access the Spark Gateway API (Optional, Admin
Manual 3.25).
Create RDP servers with config.html or HTTP API (Integration Guide 4.1), and make it as a
white list.
Allow symlink access only by setting symlinkOnly = true in gateway.conf. Server id or
address will not be allowed to create a connection.
Disable VNC access by setting vnc = false in gateway.conf (SSH, Telnet are disabled by
default).

Basic flow:

1. User login to User Portal.
2. (optional) User Portal create a server on Spark Gateway with HTTP API if that server is not

created yet:
http://gatewayAddress/SERVER?id=serverId&displayName=Name&server=hostName&gat
ewayPwd=passwordInGateway.conf&...; Check if server exists:
http://wthink/SERVER?action=list&gatewayPwd=21232f297a57a5a743894a0e4a801fc3&i
d=serverId;
The gateway will return HTTP Status code 500 and {"error:": "not found"} in JSON format.

3. User Portal create a symlink on Spark Gateway with HTTP API:
'http://gatewayAddress/SYMLINK?symlink=symlinkId&server=existingServerId&validTime
=8h&gatewayPwd=passwordInGateway.conf¶meters=' +
encodeURIComponent('user=domainUser&pwd=domainPassword&domain=domain');

Appendix A – Integration
with symlink use case

https://docs.sparkview.info/books/sparkview-admin-manual/page/325-usb-redirection
https://docs.sparkview.info/books/sparkview-admin-manual/page/325-usb-redirection
https://docs.sparkview.info/books/sparkview-integration-guide/page/41-http-api

4. User portal construct a connection link and display it to user:
http://gateway/rdpdirect.html?symlink=symlinkId&displayName=nameOnBrowserTitle; or
use the Spark View JS library directly to create a connection:
var rdp = new svGlobal.Rdp(‘wss://gateway/RDP?symlink=symlinkId&..’, width, height, color);

5. User click the link and connect.
6. User portal delete the symlink when user exist or close the browser:

http://gatewayAddress/SYMLINK?symlink=symlinkId&action=delete

Pros:

Easy and secure.
Symlink will be invalid or deleted and it cannot be reused by other.
No need to send the user credential to the browser side.

Cons:

User domain credentials need to be sent to the gateway in plain text.

Actors:

User Portal, Spark Gateway, Third party application or HTTP server

Preconditions:

User Portal:

Prepare a token which can be used to verify user.

Spark Gateway:

Configure authToken.name, authToken.exec, authToken.sucessCode in gateway.conf.

Basic flow:

1. User Portal send the token to Spark Gateway along with other parameters.
2. Spark Gateway check if the token name is same as the value configured in

authToken.name. It’s same, then.
3. Spark Gateway execute the application or HTTP Request(GET) configured in

authToken.exec, if the return code or HTTP Status code is same as the
authToken.sucessCode, gateway will allow the connection, otherwise reject it.

Appendix B – Integration
with third party application
or HTTP service

Actors:

User, User Portal, Spark Gateway

Preconditions:

User Portal:

Have user credentials in plain text.
Provide a service to verify the user (optional).

SparkView:

Write a simple plugin in java for Spark Gateway.
Disable VNC access by setting vnc = false in gateway.conf (SSH, Telnet are disabled by
default).

Basic flow:

1. User login to User Portal.
2. User Portal encrypt the user credential and other information like User Portal session id as

a token string, for example:
'user=domainUser&pwd=domainPassword&domain=domain&session=id’.

3. User Portal construct a connection link and display it to user:
http://gateway/rdpdirect.html?token=myEcryptedToken&displayName=nameOnBrowserTi
tle&otherParameters; or use the Spark View JS library directly to create a connection:
var rdp = new svGlobal.Rdp(‘wss://gateway/RDP?token=myEycryptedToken&..’, width, height, color);

4. User click the link and connect.
5. SparkView plugin decrypt the token, verify the user session (optional) and put the

decrypted RDP parameters back (Please check the plugin example for details:
http://www.remotespark.com/Plugin.zip)

Pros:

User credentials are encrypted.
Encryption and decryption are done on server side which is pretty safe.

Appendix C – Integration
with plugin use case

http://www.remotespark.com/Plugin.zip

Plugin can also be used to verify if user is form a valid session, or extend the SparkView
functionality.

Cons:

Need to write some lines of Java code for Spark View gateway.
You may need to recompile the plugin when upgrading to a new version of Spark Gateway
(if the plugin interface changed).
Encrypted user credentials still need to be sent to the browser.

Both use cases are recommended. You can also consider to use them together (symlink with
plugin), so user credentials can be encrypted and don’t need to be sent to the client side.

If User Portal cannot have the user credentials in plain text, you can consider to create a temporary
windows user account for every user and remove this account later.

You can use CEF or Electron to make a standalone client, so SparkView client can access local
resource directly (clipboard), and override some shortcuts keys reserved by the browser (Ctrl+T/W
etc).

1. Let Spark View know it can access the clipboard directly by setting directClipAccess: true in
appcfg.js.

2. For CEF, you need to enable cef_state_t javascript_access_clipboard.
3. For WebView, please check: https://stackoverflow.com/questions/4200259/tapping-

formfield-in-webview-does-not-show-soft-keyboard
4. For Electron, you can also use

mainWindow.webContents.executeJavaScript('hi5.appcfg.directClipAccess=true') to inject the code.

Appendix D – Chromium
Embedded Framework (CEF),
WebView and Electron

https://stackoverflow.com/questions/4200259/tapping-formfield-in-webview-does-not-show-soft-keyboard
https://stackoverflow.com/questions/4200259/tapping-formfield-in-webview-does-not-show-soft-keyboard

In addition to the known and internal verification options, an external application can also be used
for verification. This is usually easier than using your own plugin.
To do this, add the following lines to gateway.conf

SparkView will replace %1 with the value of the token in the WebSocket URL. The application can
then verify or decrypt this value. Additional parameters can also be written back to standard
output. These have the following format:

The output must start with __SG_ARGS=true\t , where the different arguments are then separated by
the tab character (\t). SparkView will then add these parameters back to the WebSocket URL.

Appendix E – Integration
with an external application

authToken.name = myToken
authToken.exec = C://MyApps//auth.exe %1

__SG_ARGS=true\tArg1=v1\tArg2=v2

