
5. – Further
management and
configuration

5.1 – Session management
5.2 – Multi-Monitor
5.3 – SMB2 and SFTB file proxy
5.4 – Deploy, run and test applications in the cloud
5.5 – IP filter (iptables)
5.6 – SNMP integration
5.7 – SSH authentication with keys

5.1 – Session management
You can use config.html to check session status, terminate or join a session on the gateway:

https://docs.sparkview.info/uploads/images/gallery/2024-06/scr-20240611-nsyf.png

5.2 – Multi-Monitor
You’ll have to open a new browser window for every monitor because you can not span a full
screen browser window on multi monitors.

1. Go to the "Multi-Monitor" tab, click "Open" to open a new browser window
2. Move the new window to the second screen and make it full screen.
3. Make the current browser window full screen and connect.

5.3 – SMB2 and SFTB file
proxy
Spark Gateway can also act as a SMB2/SFTP file proxy. User can access their SMB share, SFTB files
with file.html with the following advantages:

No need to expose your SMB, SFTB server.
Protected with TLS encryption.
No need to expose RPC, pipe access with SMB.
Easily integration file access with our HTML5 interface and library.

https://docs.sparkview.info/uploads/images/gallery/2024-06/bildschirmfoto-2024-06-11-um-15-35-54.png

5.4 – Deploy, run and test
applications in the cloud
Deploy and test your application in cloud can cumbersome. You need:

Create bastion for individual work stream or project.
Manage a lot of bastion hosts and user account is really painful.
Security is always a problem for those bastion hosts.

Take advantage of our Spark Gateway proxy, SSH and SFTP feature. We developed a native agent
which will work with the gateway to make this a lot easier. Please check our Deploy applications in
cloud with SparkView.

https://docs.sparkview.info/books/sparkview-deploy-applications-in-the-cloud
https://docs.sparkview.info/books/sparkview-deploy-applications-in-the-cloud

5.5 – IP filter (iptables)
You can set up IP filters for SparkView.

First, save you ip filters into a JSON file. Here is the format of the IP filter configuration file:

{
 "zoneRules": {
 "HTTP_API": {
 "allow": true,
 "ranges": [
 {
 "from": "192.168.12.100",
 "to": "192.168.12.200"
 },
 {
 "from": "169.254.84.132"
 }
]
 },
 "TCP": {
 "allow": true,
 "ranges": [
 {
 "from": "192.168.12.100",
 "to": "192.168.12.200"
 },
 {
 "from": "192.168.12.10",
 "to": "192.168.12.20"
 },
 {
 "from": "169.254.84.132"
 }
]
 }
 }

Then, you need to specify the location of this file in gateway.conf:
iptables=C:\\workspace\\data\\iptables.json

There are 3 zones available in SparkView:

"TCP" is used to control TCP connections
"HTTP_API" is used to control the HTTP API usage
"CONFIG" is used to control the config.html

Rules for accessing config.html:

1. Always accessible from the localhost
2. Accessible from anywhere if remoteManage=true in gateway.conf and correct password is

provided
3. Accessible if remoteManage=false and source IP is allowed in iptables

}

5.6 – SNMP integration
Configuration in gateway.conf:

Please check other MIB configuration files in installDir\snamp.

#agent address and port:
snmp.address.get-set = udp:192.168.1.68/1161
snmp.mib.prop.file = /SparkGateway/snmp/snmp-agent-mib.properties
nmp.table.size.limits.prop.file = /SparkGateway/snmp/snmp-agent-table-size-limits.properties

percentage of license usage to send alert
snmp.license.usage.warning.percentage=0.5

5.7 – SSH authentication
with keys
To be able to authenticate to a created target system via SSH using public and private keys, the
following steps must be followed, which will be described in more detail later:

1. Generate an SSH key
2. Copy the key to a server
3. Test the key
4. Optional: convert private key to .pem format

5. Include the key in SparkView

1. Generate an SSH key
With OpenSSH, an SSH key is created using ssh-keygen. In the simplest form, just run ssh-keygen
and answer the questions. The following example illustates this.

ssh-keygen
Generating public/private rsa key pair.
Enter file in which to save the key (/home/sparkview/.ssh/id_rsa): mykey
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in mykey.
Your public key has been saved in mykey.pub.
The key fingerprint is: SHA256:GKW7yzA1J1qkr1Cr9MhUwAbHbF2NrIPEgZXeOUOz3Us sparkview@demo
The key's randomart image is:
+---[RSA 2048]----+
|.*++ o.o. |
|.+B + oo. |
| +++ *+. |
| .o.Oo.+E |
| ++B.S. |
| o * =. |
| + = o |

Creating a key pair (public key and private key) only takes a minute. The key files are usually
stored in the ~/.ssh directory.

2. Copy the key to a server
Once an SSH key has been created, the ssh-copy-id command can be used to install it as an
authorized key on the server. Once the key has been authorized for SSH, it grants access to the
server without a password.

Use a command like the following to copy SSH key:
ssh-copy-id -i ~/.ssh/mykey user@host

This logs into the server host, and copies keys to the server, and configures them to grant access
by adding them to the authorized_keys file. The copying may ask for a password or other
authentication for the server.

Only the public key is copied to the server. The private key should never be copied to another
machine.

3. Test the key
Once the key has been copied, it is best to test it:

ssh -i ~/.ssh/mykey user@host

The login should now complete without asking for a password. Note, however, that the command
might ask for the passphrase you specified for the key.

4. Optional: convert private key to .pem format
If you do not have the private key in pem format and/or SparkView shows an error message like the
following ...

| + = = . |
| + o o |
+----[SHA256]-----+ #

SEVERE: Invalid PEM structure, '-----BEGIN...' missing

java.io.IOException: Invalid PEM structure, '-----BEGIN...' missing
	at com.trilead.ssh2.crypto.PEMDecoder.parsePEM(SourceFile:183)
	at com.trilead.ssh2.crypto.PEMDecoder.decode(SourceFile:429)

... you should convert the private key to the correct format. To do this, you can run the following
command:

ssh-keygen -f mykey -m pem -p && cat mykey > mykey.pem

You may need to re-enter the passphrase for the key. The command creates a pem version of the
private key and then copies it to a key file named "mykey.pem".

5. Include the key in SparkView
To finally use the key with SparkView, copy the previously created file "mykey.pem" into the root
directory of SparkView. Then you enter the location of the key in the server configuration:

When you connect to the server afterwards, you only need to enter the SSH username and the
connection will be authenticated and established automatically. Alternatively, you can forward the
credentials from the user, but the SparkView user name and the SSH user name must be the same.

	at com.trilead.ssh2.auth.AuthenticationManager.authenticatePublicKey(SourceFile:175)
	at com.trilead.ssh2.Connection.authenticateWithPublicKey(SourceFile:335)
	at com.trilead.ssh2.Connection.authenticateWithPublicKey(SourceFile:428)
	at com.toremote.websocket.ssh.SSHWrapper.connect(SourceFile:109)
	at com.toremote.websocket.ssh.SSHRunner.run(SourceFile:165)

